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Well known fields: Q and R
1 Any two elements a, b can be added. Moreover, a + b = b + a and

(a + b) + c = a + (b + c),

2 there is 0, which satisfies for any a, a + 0 = 0 + a = a,

3 for any a there is its additive inverse −a such that
a + (−a) = (−a) + a = 0,

4 any two elements a, b can be multiplied. Moreover, a · b = b · a, and
(a · b) · c = a · (b · c),

5 there is 1, which satisfies for any a, a · 1 = 1 · a = a,

6 for any non-zero element a there is its multiplicative inverse 1
a , such

that a · 1a = 1
a · a = 1,

7 (a + b) · c = a · c + b · c .
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Definitions

Definition

A set K together with two binary operations + and · defined on K
is called a field if it satisfies properties listed below.

For any a, b, c ∈ K , a + b = b + a and
a + (b + c) = (a + b) + c ,

there is an element 0 ∈ K such that for any a ∈ K ,
a + 0 = 0 + a = a,

for any a ∈ K there exists −a ∈ K such that
a + (−a) = (−a) + a = 0,
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Definitions

for any a, b, c ∈ K , a · b = b · a and a · (b · c) = (a · b) · c ,

there is an element 1 ∈ K such that for any a ∈ K ,
a · 1 = 1 · a = a,

for any a ∈ K for which a 6= 0 there is 1
a ∈ K such that

a · 1a = 1
a · a = 1,

For any a, b, c ∈ K , (a + b) · c = a · c + b · c.
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Non-standard examples

Example: Consider the set Z2 = {0, 1} and define addition and
multiplication by

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Z2 with + and · defined above is a field.

Warning

Not everything with addition and multiplication is a field.

Example: Z together with the standard addition and multiplication is not a

field because only for 1 ∈ Z there is a multiplicative inverse.
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Complex numbers, informally

Recall that the equation

x2 + 1 = 0

doesn’t have any real solutions. Sometimes, we need solutions to
such equations. What should we do?
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Complex numbers, informally

We should extend the set of reals. Informally, we should introduce
a new number

i

such that i2 = −1. Clearly, i will not be a real number.
Introducing i is not enough...
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Complex numbers: slightly more formally

Definition

A complex number is an expression a + bi , where a, b ∈ R. The set
of all complex numbers is denoted by C.

Definition

We define addition and multiplication by:

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi) · (c + di) = (ac − bd) + (ad + bc)i .
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Addition and multiplication of complex numbers

Fact

Addition and multiplication of complex numbers are both
commutative and associative. Moreover, multiplication is
distributive over addition.

Proof: straightforward verification.
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Inversion

For any complex number a + bi we have

(a + bi)(a− bi) = a2 + b2.

Fact

Let z = a + bi be a non-zero complex number. Then the inverse of
z is given by

1

z
=

1

a + bi
=

a

a2 + b2
− b

a2 + b2
i

Proof:
1

a + bi
=

a− bi

(a + bi)(a− bi)
=

a− bi

a2 + b2
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Inversion: examples

The inverse of z = i :

1

i
=

−i

i · (−i)
=
−i

1
= −i .

The inverse of z = 1 + i :

1

1 + i
=

1− i

(1 + i)(1− i)
=

1− i

2
=

1

2
+

1

2
i .
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Field of complex numbers

Theorem

The set of complex numbers with the complex numbers addition
and multiplication forms a field.

Tomasz Brengos Transition Maths and Algebra with Geometry 14/34



Fields
Field of complex numbers

Polynomials

Basic definitions

Definition

Let z = a + bi be a complex number. We define

Re(z) = a (the real part of z),

Im(z) = b (the imaginary part of z),

|z | =
√

a2 + b2 (the modulus of z),

z̄ = a− bi (the conjugate of z).

Tomasz Brengos Transition Maths and Algebra with Geometry 15/34



Fields
Field of complex numbers

Polynomials

Properties

Properties

|z − z1| is the distance between two numbers z and z1,

z · z̄ = |z |2,

|z | =
√

z · z̄ ,

Re(z) = 1
2(z + z̄)

Im(z) = 1
2i (z − z̄)

Proof: an exercise.
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Coordinates

Since any complex number z = a + bi is a pair of two real numbers
we can mark its position on the plane.

Image source: wikipedia.org
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Polar coordinates

Definition

Instead of Cartesian coordinates, we can use polar coordinates to
determine a complex number z = a + bi . The complex number z is
determined by two values: its modulus |z | =

√
a2 + b2 and its

argument or phase arg(z).

Image source: wikipedia.org

Tomasz Brengos Transition Maths and Algebra with Geometry 18/34



Fields
Field of complex numbers

Polynomials

Polar vs. cartesian coordinates

Theorem

Let z = a + bi be a complex number and let |z | be its modulus
and ϕ = arg(z) its argument. Then

a = |z | cos(ϕ),

b = |z | sin(ϕ).

and

|z | =
√

a2 + b2,

ϕ may be computed from tanϕ =
b

a
.

z = |z | (cosϕ+ i sinϕ)
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Polar coordinates: properties and examples

Fact

If ϕ is the argument of a complex number z then so is

ϕ+ 2kπ for any k ∈ Z.

Definition

The argument ϕ of a complex number z for which ϕ ∈ (−π, π] is called the

principal argument.

Let z = 1 + i . Then |z | =
√

2. The argument can be deduced from the graph.

We have arg(z) = π
4

= 45o . In other words, 1 + i =
√

2(cos π
4

+ i sin π
4

)
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Multiplication in polar coordinates

Theorem

Let z1 = |z1|(cosϕ1 + i sinϕ1) and z2 = |z2|(cosϕ2 + i sinϕ2) be
two complex numbers. Then

z1 · z2 = |z1| · |z2|(cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2))

z1
z2

=
|z1|
|z2|

(cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2))
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De Moivre’s formula

Let z0 = 1 and let zn = zn−1 · z .

Theorem: De Moivre’s formula

Let z = |z |(cosϕ+ i sinϕ) be a complex number and let n ∈ N.
Then

zn = |z |n(cos(nϕ) + i sin(nϕ))

Example: Calculate (1 + i)100.

(1 + i)100 = (
√

2(cos
π

4
+ i sin

π

4
))100 =

√
2
100

(cos 100
π

4
+ i sin 100

π

4
) = 250(cos 25π + i sin 25π) =

250(cosπ + i sinπ) = −250.
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De Moivre’s formula: consequences

Definition

Any number w satisfying wn = z for a complex number z 6= 0 is
called the n-th root of z .

Theorem

Let z = |z |(cosϕ+ i sinϕ) be a complex number and let n ∈ N.
Then every n-th root of z is of the form

zk = n
√
|z |(cos

ϕ+ 2kπ

n
+ i sin

ϕ+ 2kπ

n
)

for k = 0, 1, . . . n − 1.
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De Moivre’s formula: consequences

Fact

Let z be a complex number. All of the n-th roots of z lie on the
circle whose centre is the point 0 and whose radius is n

√
|z |. They

divide the circumference into n equal arcs.
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De Moivre’s formula: example

Example: Find the square roots of 2i .

2i = 2(cos
π

2
+ i sin

π

2
).

Then:

z0 =
√

2(cos
π
2

2
+ i sin

π
2

2
) =
√

2(cos
π

4
+ i sin

π

4
) = 1 + i ,

z1 =
√

2(cos
π
2 + 2π

2
+ i sin

π
2 + 2π

2
) =

√
2(cos

3π

4
+ i sin

3π

4
) = −1− i .
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Roots of 1

If z = 1 then

zk = cos
2kπ

n
+ i sin

2kπ

n
, for k ∈ {0, . . . n − 1}

are the n-th roots of 1.
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Definition

Definition

Let K be a field. A polynomial f of degree n =: deg(f ) over the field K is an
expression of the form

f (x) = anx
n + an−1x

n−1 + . . .+ a1x + a0

for a0, a1, . . . , an ∈ K and an 6= 0. The set of all polynomials over the field K is

denoted by K[x ]. We assume that the degree of the zero polynomial 0 is −∞.

Examples:
x + 1, x2 + (2 + i)x + i , 2x3 + 1.

We define addition and multiplication of two polynomials f , g ∈ K[x ].
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Division

Fact

Let f and g be polynomials over the field K and let
deg(f ) ≥ deg(g). Then there are polynomials q, r ∈ K[x ] such
that

f = q · g + r , where deg(r) < deg(g).

Example: f (x) = x2 + 1, g(x) = x + 1. Then

x2 + 1 = (x − 1) · (x + 1) + 2
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Reducibility

Definition

A polynomial f ∈ K[x ] is called reducible if there are two
polynomials g , h ∈ K[x ] such that deg(g) > 0, deg(h) > 0 and

f = g · h.

f ∈ K[x ] is called irreducible if for any g , h ∈ K[x ]

f = g · h =⇒ deg(g) = 0 or deg(h) = 0.

Example: x + 1 is irreducible over R and C. x2 + 1 is irreducible over R but it
is reducible over C since

x2 + 1 = (x − i)(x + i).
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Main Theorem of Algebra

An element a ∈ K is called the root of a polynomial f ∈ K[x ] if
f (a) = 0.

Main Theorem of Algebra

Any polynomial f ∈ C[x ] of degree deg(f ) ≥ 1 has a root in C.

Corollary

Any polynomial f ∈ C[x ] of degree deg(f ) ≥ 1 can be factored
into the product of polynomials of degree 1:

f (x) = a(x − z0)k0(x − z1)k1 . . . (x − zm)km ,

where ki > 0 and k1 + . . .+ km = deg(f ).
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Polynomials over complex numbers

Theorem

The formulas for calculating roots of a quadratic polynomial over
C are the same as the formulas used to find roots of quadratic
polynomials over R, i.e. given a polynomial f (x) = ax2 + bx + c
where a, b, c ∈ C the roots are given by:

z0 =
−b − δ

2a
,

z1 =
−b + δ

2a
,

where δ denotes any square root of ∆ = b2 − 4ac.
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Polynomials over reals

Theorem

Let f ∈ R[x ]. If a complex number z ∈ C is a root of f then so is
its conjugate. In other words,

f (z) = 0 =⇒ f (z̄) = 0.

In C[x ] the only irreducible polynomials of positive degree are the
polynomials of degree 1.

Corollary

In R[x ] the irreducible polynomials of positive degree are either the
polynomials of degree 1 or the polynomials of degree 2 whose
∆ < 0.
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