Transition Maths and Algebra with Geometry

Tomasz Brengos

Lecture Notes Electrical and Computer Engineering

-

Contents

Pield of complex numbers

3 Polynomials

3

Well known fields: ${\mathbb Q}$ and ${\mathbb R}$

- Any two elements a, b can be added. Moreover, a + b = b + a and (a + b) + c = a + (b + c),
- 2 there is 0, which satisfies for any a, a + 0 = 0 + a = a,
- for any a there is its additive inverse -a such that a+(-a) = (-a) + a = 0,
- **(a** any two elements a, b can be multiplied. Moreover, $a \cdot b = b \cdot a$, and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,
- **(**) there is 1, which satisfies for any a, $a \cdot 1 = 1 \cdot a = a$,
- for any non-zero element *a* there is its multiplicative inverse $\frac{1}{a}$, such that $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$,

(
$$a + b$$
) $\cdot c = a \cdot c + b$
PROGRAM ROZWOJOWY
POLITECHNIKI WARSZAWSKIEJ

・ 同 ト ・ ヨ ト ・ ヨ ト

Definitions

Definition

A set K together with two binary operations + and \cdot defined on K is called a *field* if it satisfies properties listed below.

- For any *a*, *b*, *c* ∈ *K*, *a* + *b* = *b* + *a* and *a* + (*b* + *c*) = (*a* + *b*) + *c*,
- there is an element $0 \in K$ such that for any $a \in K$, a + 0 = 0 + a = a,
- for any $a \in K$ there exists $-a \in K$ such that a + (-a) = (-a) + a = 0,

- 王王 - 王王

Definitions

- for any $a, b, c \in K$, $a \cdot b = b \cdot a$ and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$,
- there is an element $1 \in K$ such that for any $a \in K$, $a \cdot 1 = 1 \cdot a = a$,
- for any $a \in K$ for which $a \neq 0$ there is $\frac{1}{a} \in K$ such that $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$,
- For any $a, b, c \in K$, $(a + b) \cdot c = a \cdot c + b \cdot c$.

Non-standard examples

Example: Consider the set $\mathbb{Z}_2=\{0,1\}$ and define addition and multiplication by

+	0	1	•	0	1
0	0	1	0	0	0
1	1	0	1	0	1

 \mathbb{Z}_2 with + and \cdot defined above is a field.

Warning

Not everything with addition and multiplication is a field.

Example: \mathbb{Z} together with the standard addition and multiplication is not a field because only for $1 \in \mathbb{Z}$ there is a multiplicative inverse.

Contents

3 Polynomials

Complex numbers, informally

Recall that the equation

$$x^2 + 1 = 0$$

doesn't have any real solutions. Sometimes, we need solutions to such equations. What should we do?

Complex numbers, informally

We should extend the set of reals. Informally, we should introduce a new number

1

such that $i^2 = -1$. Clearly, *i* will not be a real number. Introducing *i* is not enough...

Complex numbers: slightly more formally

Definition

A complex number is an expression a + bi, where $a, b \in \mathbb{R}$. The set of all complex numbers is denoted by \mathbb{C} .

Definition

We define addition and multiplication by:

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

 $(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i.$

Addition and multiplication of complex numbers

Fact

Addition and multiplication of complex numbers are both commutative and associative. Moreover, multiplication is distributive over addition.

Proof: straightforward verification.

11/34

Inversion

For any complex number a + bi we have

$$(a + bi)(a - bi) = a^{2} + b^{2}.$$
Fact
Let $z = a + bi$ be a non-zero complex number. Then the inverse of
z is given by

$$\frac{1}{z} = \frac{1}{a + bi} = \frac{a}{a^{2} + b^{2}} - \frac{b}{a^{2} + b^{2}}i$$
Proof:

$$\frac{1}{a + bi} = \frac{a - bi}{(a + bi)(a - bi)} = \frac{a - bi}{a^{2} + b^{2}}$$
PROGRAM ROZWOJOWY
POLITECHNIKI WARSZAWSKIEJ

Inversion: examples

The inverse of z = i:

$$\frac{1}{i} = \frac{-i}{i \cdot (-i)} = \frac{-i}{1} = -i.$$

The inverse of z = 1 + i:

$$\frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{2} = \frac{1}{2} + \frac{1}{2}i.$$

< ∃ >

 $\exists \rightarrow$

Field of complex numbers

Theorem

The set of complex numbers with the complex numbers addition and multiplication forms a field.

∃ → < ∃ →</p>

< A

Basic definitions

Definition

Let z = a + bi be a complex number. We define

$$\begin{aligned} \mathfrak{Re}(z) &= a \text{ (the real part of } z), \\ \mathfrak{Im}(z) &= b \text{ (the imaginary part of } z), \\ |z| &= \sqrt{a^2 + b^2} \text{ (the modulus of } z), \\ \bar{z} &= a - bi \text{ (the conjugate of } z). \end{aligned}$$

- 4 同 1 - 4 回 1 - 4 回 1

Properties

Properties

- $|z z_1|$ is the distance between two numbers z and z_1 ,
- $z \cdot \overline{z} = |z|^2$,
- $|z| = \sqrt{z \cdot \overline{z}}$,

•
$$\mathfrak{Re}(z) = \frac{1}{2}(z+\bar{z})$$

• $\Im \mathfrak{m}(z) = \frac{1}{2i}(z-\overline{z})$

Proof: an exercise.

- 4 同 1 - 4 回 1 - 4 回 1

16/34

э

Coordinates

Since any complex number z = a + bi is a pair of two real numbers we can mark its position on the plane.

FUNDUSZ SPOŁECZNY

Polar coordinates

Definition

Instead of Cartesian coordinates, we can use polar coordinates to determine a complex number z = a + bi. The complex number z is determined by two values: its modulus $|z| = \sqrt{a^2 + b^2}$ and its argument or phase arg(z).

Polar vs. cartesian coordinates

Theorem

Let z = a + bi be a complex number and let |z| be its modulus and $\varphi = \arg(z)$ its argument. Then

 $\begin{aligned} \mathbf{a} &= |\mathbf{z}| \cos(\varphi), \\ \mathbf{b} &= |\mathbf{z}| \sin(\varphi). \end{aligned}$

and

$$|z| = \sqrt{a^2 + b^2},$$

 φ may be computed from $\tan \varphi = \frac{b}{a}.$

$$z = |z| \left(\cos \varphi + i \sin \varphi\right)$$

イロト イポト イヨト イヨト

Polar coordinates: properties and examples

Fact

If φ is the argument of a complex number z then so is

$$\varphi + 2k\pi$$
 for any $k \in \mathbb{Z}$.

Definition

The argument φ of a complex number z for which $\varphi \in (-\pi, \pi]$ is called the *principal argument*.

Let z = 1 + i. Then $|z| = \sqrt{2}$. The argument can be deduced from the graph. We have $\arg(z) = \frac{\pi}{4} = 45^{\circ}$. In other words, $1 + i = \sqrt{2}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$

イロト イポト イヨト イヨト

20/34

Multiplication in polar coordinates

Theorem

Let $z_1 = |z_1|(\cos \varphi_1 + i \sin \varphi_1)$ and $z_2 = |z_2|(\cos \varphi_2 + i \sin \varphi_2)$ be two complex numbers. Then

$$z_1 \cdot z_2 = |z_1| \cdot |z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

De Moivre's formula

Let
$$z^0 = 1$$
 and let $z^n = z^{n-1} \cdot z$.

Theorem: De Moivre's formula

Let $z = |z|(\cos \varphi + i \sin \varphi)$ be a complex number and let $n \in \mathbb{N}$. Then

$$z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi))$$

Example: Calculate $(1 + i)^{100}$.

$$(1+i)^{100} = (\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}))^{100} = \sqrt{2}^{100}(\cos 100\frac{\pi}{4} + i\sin 100\frac{\pi}{4}) = 2^{50}(\cos 25\pi + i\sin 25\pi) = 2^{50}(\cos \pi + i\sin \pi) = -2^{50}.$$
PROGRAM ROZWOJOWY
POLITECHNIKI WARSZAWSKIEJ

-

(*) *) *) *)

De Moivre's formula: consequences

Definition

Any number w satisfying $w^n = z$ for a complex number $z \neq 0$ is called the n-th root of z.

Theorem

Let $z = |z|(\cos \varphi + i \sin \varphi)$ be a complex number and let $n \in \mathbb{N}$. Then every n-th root of z is of the form

$$z_{k} = \sqrt[n]{|z|} (\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n})$$

or $k = 0, 1, \dots n - 1$.
OLITECHNIKI WARSZAWSKIEJ

23/34

De Moivre's formula: consequences

Fact

Let z be a complex number. All of the n-th roots of z lie on the circle whose centre is the point 0 and whose radius is $\sqrt[n]{|z|}$. They divide the circumference into n equal arcs.

24/34

De Moivre's formula: example

Example: Find the square roots of 2*i*.

$$2i = 2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right).$$

Then:

$$z_{0} = \sqrt{2}\left(\cos\frac{\frac{\pi}{2}}{2} + i\sin\frac{\frac{\pi}{2}}{2}\right) = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = 1 + i,$$

$$z_{1} = \sqrt{2}\left(\cos\frac{\frac{\pi}{2} + 2\pi}{2} + i\sin\frac{\frac{\pi}{2} + 2\pi}{2}\right) = \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = -1 - i.$$
PROGRAM ROZWOJOWY
EUROPESKA
FUNDUSZ SPOŁECZNY
FUNDUSZ FUNDUSZ SPOŁECZNY
FUNDUSZ FUNDUSZ
FUNDUSZ FUNDUSZ
FUNDUSZ FUNDUSZ
FUNDUSZ FUNDUSZ
FUNDUSZ FU

< ∃ >

25/34

э

Roots of 1

If
$$z = 1$$
 then

$$z_k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}, \text{ for } k \in \{0, \dots, n-1\}$$

are the n-th roots of 1.

Contents

3

Definition

Definition

Let \mathbb{K} be a field. A polynomial f of degree $n =: \deg(f)$ over the field K is an expression of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

for $a_0, a_1, \ldots, a_n \in K$ and $a_n \neq 0$. The set of all polynomials over the field \mathbb{K} is denoted by $\mathbb{K}[x]$. We assume that the degree of the zero polynomial 0 is $-\infty$.

Examples:

$$x+1$$
, $x^{2}+(2+i)x+i$, $2x^{3}+1$.

We define addition and multiplication of two polynomials $f, g \in \mathbb{K}[x]$.

Division

Fact

Let f and g be polynomials over the field \mathbb{K} and let $deg(f) \ge deg(g)$. Then there are polynomials $q, r \in \mathbb{K}[x]$ such that

$$f = q \cdot g + r, ext{ where } deg(r) < deg(g).$$

Example: $f(x) = x^2 + 1, g(x) = x + 1$. Then

$$x^{2} + 1 = (x - 1) \cdot (x + 1) + 2$$

э

Reducibility

Definition

A polynomial $f \in \mathbb{K}[x]$ is called *reducible* if there are two polynomials $g, h \in \mathbb{K}[x]$ such that $\deg(g) > 0$, $\deg(h) > 0$ and

 $f = g \cdot h.$

 $f \in \mathbb{K}[x]$ is called *irreducible* if for any $g, h \in \mathbb{K}[x]$

$$f = g \cdot h \implies \deg(g) = 0 \text{ or } \deg(h) = 0.$$

Example: x + 1 is irreducible over \mathbb{R} and \mathbb{C} . $x^2 + 1$ is irreducible over \mathbb{R} but it is reducible over \mathbb{C} since

$$x^{2} + 1 = (x - i)(x + i).$$

UNIA EUROPEJSK/ EUROPEJSK FUNDUSZ SPOŁECZNI

Main Theorem of Algebra

An element $a \in \mathbb{K}$ is called the root of a polynomial $f \in \mathbb{K}[x]$ if f(a) = 0.

Main Theorem of Algebra

Any polynomial $f \in \mathbb{C}[x]$ of degree $deg(f) \geq 1$ has a root in \mathbb{C} .

Corollary

Any polynomial $f \in \mathbb{C}[x]$ of degree $deg(f) \ge 1$ can be factored into the product of polynomials of degree 1:

$$f(x) = a(x - z_0)^{k_0}(x - z_1)^{k_1} \dots (x - z_m)^{k_m},$$

where $k_i > 0$ and $k_1 + \ldots + k_m = deg(f)$.

Polynomials over complex numbers

Theorem

POLITECHNIKI WARSZAWSKIFI

The formulas for calculating roots of a quadratic polynomial over \mathbb{C} are the same as the formulas used to find roots of quadratic polynomials over \mathbb{R} , i.e. given a polynomial $f(x) = ax^2 + bx + c$ where $a, b, c \in \mathbb{C}$ the roots are given by:

$$z_0 = \frac{-b - \delta}{2a},$$
$$z_1 = \frac{-b + \delta}{2a},$$

FUNDUSZ SPOŁECZN

where δ denotes any square root of $\Delta = b^2 - 4ac$.

CZŁOWIEK – NAJLEPSZA INWESTYCJA

Polynomials over reals

Theorem

Let $f \in \mathbb{R}[x]$. If a complex number $z \in \mathbb{C}$ is a root of f then so is its conjugate. In other words,

$$f(z)=0 \implies f(\bar{z})=0.$$

In $\mathbb{C}[x]$ the only irreducible polynomials of positive degree are the polynomials of degree 1.

Corollary

In $\mathbb{R}[x]$ the irreducible polynomials of positive degree are either the polynomials of degree 1 or the polynomials of degree 2 whose $\Delta < 0$.